L 4

AD=AL103 113 KANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE F/6 9/2
RESEARCH IN FUNCTIONALLY DISTRIBUYED COMPUTER SYSTEMS DEVELOPME==ETC (U}
DEC 76 P S FISHER» F J MARYANSKI DAAG29=76=6=0108

“nm""’ i..........

END
oxe

FilEo
=3t
omic

! AIRMICS

ADA103113

G . o

Army (nstitute tor Research in 313 Calculator Bidg.
Management information and GA Institute of Technology
Computer Science Atlanta, GA 30332

. 0
Technical Report b

RESEARCH IN FUNCTIONALLY
DISTRIBUTED COMPUTER

SYSTEMS DEVELOPMENT

Kansas State University

Virgil Wallentine
Principal Investigator ' DT'C

ELECTE
AUG 20 1SBID 1
!

F

Approved for public release; distribution unlimited A

VOLUME V1|

A USER--TRANSPARENT MECHANISM FOR THE
DISTRIBUTION OF A CODASYL
DATA BASE MANAGEMENT SYSTEM

e+ et e eee— e,

U.S. ARMY COMPUTER SYSTEMS COMMAND FT BELVOIR, VA 22060

ol 8 .Y V4

A

b

s

T

e

1
st .
A USI:.R-TRANSPARENT MECHANISM FOR THE DISTRI—

—e e e f et ——— - (’
~3ECURMY CLASSIFICATION OF THIS PAGE (When lNnta Enlered)

* REPORT DOCUMENTATlON PAGE /

n‘/‘pnm r %f {

UFFORE COMPL!-.TH\G FORM

ER

e T .| LAD

2. GOVT ACCESSION NO.

fLiL'\‘\l

REPORTY

QQSP‘J [

3. RECIPIENT'S CATALOG NUMBER

3

Sal ,-*;,] Con g - Lo

2rr c Ve 1 OF
BUTION OF A (.ODASYL pATA BASE MANAGEMENT §YSTEM

S. Ty f OF REPORT & PERIOD COVERED
et ol e i 3 -
/ Iterim

T e . e w et o -

[

Jf

5. P

j4
GRANT NUMBER(s)

ALl +ORfe)

Paul S.!Fisher
“Fred]Maryanskl

|

ERFORMING O?G. REPORT NUMBER
3 !gi[s-—ig_z(a

h 7‘DAA€ 79-76-~ c-/l 8
Virgil E. Wallentine QS y S o V
ZATION 16 PROGRAN ELEWENT PROJIE PROJECY TASK
3. PERFORMING oncamznu?n ~m§ AND ADORESS PROGRAM ELEMENT. PROJES
Kansas State University
Department of Computer Science
Manhattan, KS 66506 N (
J71. CONTROLLING OFFICE NAME AND ADDRESS 12. ey
US Army Research Office Decembenrid’6
P O Box 12211 13. NUMBER OF PAGES
Research Triangle Park, NC 27700 6 pages
14. MONITORING AGENCY NAME & ADDRESS(/f dilferent from Controlling Office) 15. SECURITY CL ASS. (of this report)
US Army Computer Systems Command e
Attn: CSCS-AT Unclassified
3 i T5a. DECL ASSIFICATION. COWNGRADING
i Ft. Belvoir, VA 2206(& /0’)\/} :7 . DECLASSIFI N
T16. DISTRIBUTION STATEMENT (of this Reporl)
i
b
; Approved for public release; distribution unlimited.
f 17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, it difterent from Report)
g
218 SUPPLEMENTARY NOTES
; The findings in this report are not to be construed as an official
] P
'z Department of the Army position, unless so designated by other authorized
i documents.
:;71. KEY WORDS (Continue on reverse side if necessary and identity by block number)
1]
§ NDBMS
; 0BMS
i
2. ABSTRACT [Continue on reverse aide If necosaary and identify by dblock number)
-over-
0D ,"Sh%, 1473 eoimion oF 1 NOv 6815 0BsOLETE Unclassified

UNCLASSIVIED
S$ECURITY CL ALSIFICATION OF THIS PAGE(Whon Data Entered)

=ABSTRACT-

“A software organization is presented to provide for
data definition and manipulation in a distributed data base
management system. With the mechanism for distributing the
data base proposed here, the physical location of the data
is transparent to the user program. A Device Media Control
Language is specified for the assignment of control of and
‘i access to a data base area to a set of processors.
- Procedures for reassignment of the control and access
functions as well as the transfer of data between processors
are provided. The basic hardware and software requirements
f tor a computer network capable of supporting a distributed
1 lata base management system are discussed along with a

specification of the software required for a processor in a
I distributed data base network.

Ve -

e e
‘ .ot M

i - S IR S
Y,

- ——— ———— v S T
. . .
.
[
/

UNCLASSIVIED

A User-Transparent Mechanism
for the Distribution of
a CODASYL Data Base Management
S).'stem1

TR CS 76-22

December, 1976

Fred J. Maryanski
Paul S. Fisher
Virgil E. Wallentine

[Accession For !

NTIS GRA%I
DTIC TAB 0O
Unarnounced O

Justirication. . ___

By
Distribution/
Availability Codes
[Avail amd/or
Dist Special

ﬁ .

lThe work reported herein is supported by the U.S. Army
Research Office Grant No. DAAD-29-76-G-0108.

- i

Abstract

A software organization is presented to provide for data definition
and manipulation in a distributed data base management system. With the
mechanism for distributing the data base proposed here, the physical
location of the data is transparent to the user program. A Device
Media Control Language is specified for the assignment of control oéi
and access to a data base area to a set of processors. Procedures for
reassignment of the control and access functions as well as the transfer
of data between processors are provided. The basic hardware and soft-
wire requirements for a computer network capable of supporting a distributed
data base management system are discussed along with a specification of

the software required for a processor in a distributed data base network.

j

I. Introduction

This paper presents a software organization for a distributed data
base management system (DDBMS). A DDBMS is a data base management system
that resides on a network of computers. The processors in the network may
perform any combination of the three following functions.

a. Front-end = act as user interface, receive input, transmit output.

b. Host = execute the application program.

c. Back-end = control data base access through execution of data

base system software.

The DDBMS software structure presented in this paper reflects the
CODASYL-type data base systems [1,2]. The basic software distribution and
saveral possible hardware configurations for DDBMS systems are discussed
in Reference [3]. The emphasis of this paper is to specify the software ~
functions that are required in order to provide for proper data definition
and manipulation in a DDBMS.

One of the principle temets of the proposed DDBMS organization is that
‘i physical distribution of the data be transparent to the user. This
inpiies that at the application program level, both the program and the
uifrr are unconcerned with the precise physical location of the data or of
tize processor that is accessing the data. In addition, the DDBMS must have
iver rapapility of moving data among secondary storage devices and DBMS
functions among processors. However, the user may stipulate that units
>f duta be physically close. Additionally, it is necessary for the system
~oftwure to be portable in order for an application program to execute on

2y host machine and access data through any back-end processor. This

ability, to request relocating of tasks and data, is partially within the

DDBMS, but as with all application software, allocation of resources is
dependeét on the network operating system (NOS) upon which the DDBMS is
constructed (in this paper it is supported by an NOS subsystem called
Network Resource Control (NRC)). Information on the characteristics of
a network operating system capable of supporting a DDBMS can be obtained
in Reference fa).

The remaining sections of this paper contain a set of proposed mech-~

anisms for defining and utilizing data in a DDBMS which has the capabilities

described in the preceding paragraphs.

e

TF’TW

‘

o ———

I1. Data Definition

In a CODASYL-type DBMS the description of the data is carried out
in three steps. Initially, the schema Data Description Language (DDL) is
used to describe the logical organization and format of the data base.
That portion of the data base accessible to a particular program is defined
by means of the sub-schema DDL. The schema and sub-schema are both logical
descriptions of the data. The logical to ﬁhysical wapping is accomplished
thro;gh use of the Device Media Control Language (DMCL). It is important to
aote that the CODASYL committee condidered the DMCL as an implementation-
dependent feature of a DBMS and consequently, has not specified a DMCL. It
is through the DMCL that the distribution of the data base is accomplished.

In the definition of a distributed data base (as in the case of a
central system) the existence or laci of physical proxinity of records is
determined by their placement in areas. Areas serve as the atomic data umnit
in terms of the distribution of the data base. The DMCL is used to associate
areas with both logical back-end ﬁrocessofs an{ secondary storage devices.
This information is compiled from the DMCL and stored in the Area-Logical
Location (ALL) Table. The system may transport sreas between physical
devices. Such actions would remain transparent to the DBMS application
programs provided the ALL tables and the tables.of contents of the actual
disk cartridges indicating, respectively, the physical location of the area
and the contents of the cartridge ate properly updated.

By restricting the effects of transparency to the description of the
;reas in the DMCL, both the schema and sub-schema DDL's remain unchanged in

a DDBMS. The syntax of a DMCL for a distributéd CODASYL-type data base

~ .

system {s shown in Figure 1.

The PAGE NUMBER and SIZE sentences in the Area Section are used to

—

ScHEMA SECTION

DMCL FOR SCHEMA SCHEMANAME.

SUBSCHEMA SECTION

SUBSCHEMA IS SUBSCHEMANAME.

PREA SECTION

AREA IS AREANAME.
NUMBER OF PAGES IS INTEGERI.
PAGE SIZE IS INTEGER2.
BACKEND IS PROCESSORNAME.
DEVICE IS DEVICENAME.
(TYPE IS IDENTIFIER.)
HOSTS ARE (PROCESSORNAMES).

Ficure 1
DPMCL SynTAX

describe the size of the area. The BACKEND sentence provides a logical

name for the processor which controls access to the area. The DEVICE
sentence provides a logical name and physical type for the device upon

which the area is to be stored. A physical type can include disk, tape,

cassette, floppy disk, or any other mass storage medium. The physical {

[

device type name can be dependent upod the back-end processor or (preferrably)

follow a standard network convention. The HOSTS sentence logically names

R AR

proce§§ors which may contain application programs that access the data in
the area being described. .

The HOSTS sentence provides an additional measure of security to the
DDBMS. The data base administrator caﬁ specify if the area may be accessed
globally or restricted to a certain application system. It is important
to note that the HOSTS are identified logically i{n the DMCL. The HOSTS
sentences are specifications as to which application function may access
the data in an area. This application function may reside on several
distinct processors and may be moved ;mong processors by the'network oper-
ating system. However, unless the data base administrator assigns a logical
function name that appears in the HOSTS sentence of an area to a physical
processor, no program executing on that processor may access data in that area.

The product of a DMCL compilation is an ALL.Table whose entry format
is depicted in Figure 2. An ALL Table is maintained for each schema. Within
the table the information is grouped by area. The area information is obtained
directly from the DMCL code. E

It should be noted that processors and devices are identified logically |
in the ALL Table.. This allows areas and tasks to change their physical
location in a manner transparent to the DBMS. The logical-to-physical mapping

for processors is maintained in the network operating system nucleus on each

machine. The companion mapping for devices is maintained locally at each

- e ac

)
1VWY04 AY¥IN3 37av] TIV

Z 3¥n91y

‘V3YV 3JHL Y04 S1SOH J0 LSIT AIINIT V SI 1SI7 LSOH

»

1317
«1SOH
UL dld

39vd 39vd 3Z1IS JWYN
1871 1SY14 J9vd] IIIAIC

.......

JWVN
aNIHIVE

JWVN
(B

JWVN
VW3IHIS

network node. Figure 3 fllustrates the ALL Table and logical-to-physical
map for a sample distributed data base.
IT1I. Data Manipulation in Distributed Data Access

The mechanisns for data manipulation in a DDBMS can be presented by
considering the steps that are required for a user program to access data
on a devi;e connected to another processor.

Before an application program can access data in an area, it must first
issue a READY statement [1] for that area. The data base system obtains the
logical back-end processor and device name from the ALL Table entry of the
area named in the READY statement. {he physical processor name is obtained
from lLogical-to-Physical Processor Map maintained by the network operating
system. A message is then sent to the back-end processor requesting that
the area be made available to the application program and that a task be
created for that sub-schema (if one does not already exist). The general
format of the messages sent in the DDBMS is given in Figure 4. If the device
containing the area is onlime at the back-end processor and all integrity
and security requirements are satisfied, the back-end transmits a message to
the host processor and the application program may begin to utilize the data
in that area.

There are several situations which can hinder the completion of the
READY statement. First, we treat the problem of the device(s) containing
the area not being online. 1In this case, a message is transmitted to the
operator of the back-end processor, requesting mounting of the proper disk
pack. The pack is identified by the name obtained from the ALL Table. When
the pack is placed online, the data base system automatically verifies its
name against that requested by the application to detect any possible oper-

ator errors. Each data base contains a header which indicates the logical

Py P ke ™ P,
? :As . H
ALL TABLE (PARTIAL)
AREA BACKEND HOSTS PTR
A By o ; %
Al BO ALL l
B; — H
‘A\g By —,——ﬁ" f
Ay —H
As gg ALL l =
L-P-P MAP
LOGICAL NAME PHYSICAL ID
By Po
B Py
B, P1
B3 Py
Ho Py
H P1
Hy Po
FiGure 3 SamMPLE DISTRIBUTED DATA BaSE

Ehalat ol

SEND NESSAGE (TO_ID, MESSAGE, SIZE, EVT_ID)
WHERE

TO_ID 1S THE SYMBOLIC NAME OF THE TASK WHICH
IS TO RECEIVE THE MESSAGE.

MESSAGE SPECIFIES THE BEGINNING ADDRESS OF THE
MESSAGE TO BE SENT.

SIZE SPECIFIES THE SIZE OF THE MESSAGE TO BE
SENT, :

EVT_ID 1S AN EVENT UNIQUELY IDENTIFIED WITH THIS
MESSAGE,

RECEIVE'HESSAGE (FROM_ID, MESSAGE, EVT_ID, SIZE)
WHERE o

FROM_ID IDENTIFIES THE NAME OF A TASK FROM WHICH
A MESSAGE IS TO BE RECEIVED.

EVT_ID, SIZE, AND MESSAGE ARE AS BEFORE.

WAIT (EVT_ID)
WHERE

EVI_ID 1S AN EVENT WHICH IS SET TO "HAPPENED”
WHEN ITS ASSOCIATED OPERATION IS COMPLETE. IT ALLOWS
PROCESSES TO SUSPEND AWAITING PARTICULAR OPERATION.
SEND_COMMAND_(TO_ID, COTHAMD, EVTID)
ACCEPT_COMMAND (FROM_ED, COMMAND, EVT_ID)
WHERE COMMAND 1s A FIXED SI1ZE (SMALL) MESSAGE
CONNECT (TO_ID, COMMAND)

DISCONNECT (FRCM_ID, TYPE)
WHERE
) {IMNEDIATE, ABOUT ALL ACTIVE MESSAGES
~ | QUIESCE, ALLOW ACTIVE MESSAGES TO BE
SENT BUT NO MORE INITIATED

F1Gure &
CoNcEPTUAL MESSAGE FORMATS

10

(back-end) processors capable of accessing {ts data. This feature is included
for security purposes. If the processor names correspond, the back-end pr6~ '
cessor will notify the host processor that the area is avallable for data
nanipulation, '
Another problem occurs when there is no entry in the Logical~to-Physical
Processor Map for the back-end processor name obtained from the ALL Table.
In this case the host processor must obtain from the Data Dictionary a
1ist’ of processors that have the potential of operating under that logical
back-end name. Messages requesting, that a back-end processor assume the
functions associated with that logical name are then transmitted to the proces-
sors in that list. Once a back-end is identified, a request is made to
mount the appropriate device for the area being READYed. 1If no machine can
assume the requested logical processor role, the application program on the
host processor i{s terminated.
When a2 processor assumes a back-end function, a task must be created
in that processor to handle the data b;se requests for that area. All other
processors in the network then are notified of the new logical name for the
processor.)
Once the area has bteen READYed, the user program on the host machine
may issue DML commands to reference the data. 'The area name for any
record to be accessed by the DML commands is available in the sub~schema
which is attached to the application process during process initiation.
Using the area name, the physfcal location of the record in the network can
‘be determined from the ALL Table, the host machine then transmits a message
to the appropriate back-end processor which performs the DBMS operatfion and
transnits the results back to the host processor via the message system.
In a CODASYL-type DBMS, it is po;sible that an operation on a record in

one area may result in the need for operations on records in other areas

11

(for example, the removal of an owner record and thus all its members from
the data base). In such situations, the back-end processor controlling the
operation deteruines the back-end processor name for the effected area

from the ALL Table. 1If the procéssor names are different, a message
indicatin§ the necessary data base action must be sent to the back-end
processor of the area. This procedure could reoccur several times before
sompletion of the original DBMS operation, depending upon the complexity
and distribution of the data base. When the original back-end processor
has received completion messages fronLali of the secondary back~end

machines, it then transmits a message with the appropriate data and status

information to the host computer.
IV. Task and Data Movement
A. Conceptual Aspects
In a DDBMS, it may be desirable for reasons of efficiency or security

to change the physical location of a data base management task or data

area, Movement of data can occur either logically by a programmed (file)

transfer of an area between storage devices or physically by an operator ' 5
wmoving a storage device from one computer to another. Tasks are moved in
& DDBMS by making use of features provided inm a network operating system.

The case of logical data movement will be cohsidered first. ¥hen an
area is moved between devices controlled by the same back-end processor, the
device name must be modified in the ALi Table of that back-end processor
and the header record on the storage media must be updated. Movement
betwecen devices attached to different processors requires updating the ALL
Tables for all back-end processors that control any portion of the sub-schemas
containing the transported areas. It can be seen from the description of data
manipulation in Section III that if che ALL Tables are properly updated, there

will be no effect on cither the user program on the host or the data base

o Il

12

system on the back-end machine.

The logical movement of an area is accomplished vis network operating
system utility programs, U. lnd.Ur. executing on l.. the sending back-cnd
processor, and Br’ the receiving back-end processor, respectively. The
following procedure is executed to move area A from l. to Br'

Procedure 1 (Logical Area Movement)

Let SST. be the set of the sub-schema tasks for all sub-schemas containing
area A.

1. U8 notifies all tasks in SSTa on Bs that A will be moved.

2. All tasks in SST‘ will notify the message utility not tc accept any
further message for DML's in area A.

3. The message system on Bs instructs the message utility on all hosts
accessing this area that any DML messages referring to A are held in the
host machine by the message utility.

4. Each task in SST. »ill notify U. when all DML's for A are complete.

5. U; sends a message to Ur indicating that A is ready to be moved.

6. U. writes A onto secondary storage thus placing the latest versiom
of A onto disk.

7. A is transferred from secondary storage of Bs to secondary storage
of Br')

8. If for any sub-schema A was the only area controlled by Bs, then Us
must remove the entries for that sub-schema from the ALL Table maintained by Bs'

9. If for any sub-schema task SSTa A was the only area controlled by Bs’
}hen the task for that sub-schema must be destroyed on B..

10. If A is the only arca for a given sub-schema on Bt, then Ur must

update the ALL Tables of Br to include the entries for that sub-schema.

11. Any sub-schema tasks on B, destroyed by the movement of A must be

i
. 4

B

Tad

e

13

created (if not already present) on Bt.

12. If by receiving A, Br 1s now assuming a new logical back-end function,
then the L-P-P Map on Bs nust be updated.

13. If by sending A to Bs’ Br no longer retains that particular back-end
function, then the L-P-P Map on B. nust be updated.

14. Update all L-P-P Maps in the network if necessary.

15. The sub-schema tasks in SSTa on Br obtain the list of hosts for A
from the ALL Table.

16. The sub-schema tasks in SSI;‘notify the message utilities which are
queueing requests from their corresponding host tasks that they will now
accept DML messages for A.

Figure 5 gives a precedence graph for Algorithm 1. The interaction
of the utility tasks and system software resulting from the execution of
Procedure 1 is {llustrated in Figure 6. Only the software directly involved
in logical area movement is picturad in Figure 6.
The situation in which a physical device is moved is more complex

than logical movement. The most difficult situation occurs if the pack
(or any other type of storage device) i{s active on a back-end processor and
the operator indicates to the system the desire to remove that pack from
online status. The data base management software on the back-end processor
must complete ali requests to areas on that pack and inform the effected
hosts to hold all new requests for those areas. The operator may then - o
disengage the pack and remount it on a new machine. When the pack is
mounted on the new machine, the procedure outlined in Section III for bringing
up a new pack in the DDBMS can be followed. It is important to note that in
order for a processor to be eligible to receive the transferred pack, it must
be read and write compatible with the source processor as wvell as have the

necessary logical processor function assigned to {t.

N—
L
%
b
1
i Fieure 5
PRECEDENCE GRAPH FOR PROCEDURE 1

N T

APPLICATION TASK

————————— e ————

15

Prost L-PXP MAP
. N ,_
MESSAGE UTILITY
A |
@
(
B b By
1 L-P-P M (::) M L-P-P gz:>
T E] 3 &
MR s i ls__ MR T
! A A !
A
S G U 6 u—J R
E T E T
© OOO® i --Fis
| T L L ; !
| |'| ! I I i i
I _:j‘" . T T i _&
AL Y v | ad
- - TABLE
TABLE g : .
| SsT, 7 ST T ssT, |
 gten | ®
(SuB-SCHEMA ! B (SUB-SCHEMA <~
(6) TAsks) 7 N TASKS)
3 i 7 Y
| / \
NoY, \
| / \
FiGure 6
— -

LocicaL AReAa MovEMENT

Y - Ve

In order to allow the DDBMS to stop processing a pack prior to its
movenent, the list of active areas on the pack is determined from the Device
Header List that {s maintained by the back-end processor. For each area,
the l11st of logical host names is obtained from the ALL Table. The back-
end proeessor then accesses its logical-to-Physical Processor Map to deter-
mine the host computers which must be sent the messages indicating an area
transfer.

' The back-end data base software which controls the mounting of a new
pack must be cognizant of requirements stating that in order for a given
pack to be accessed some other pack (or packs) must also be attached to the
same processor. Such constraints could occur in the cases of multi-device
areas or for security or efficiency reasons.

The physical movement of a data base pack between back-end processors
results from carrying out the steps of Procedure 2. A pack shutdown utility
Ud is first executed on the sending back-end processor B'. A pack mount
utility.U.. is then executed on Bt‘ the recefving back-end processor.
Procedure 2 (Physical Pack Movement)

1. The 83 operator activates pack shutdown utilicy, U..

d

2. Ud initiates steps 1 - 4,6,8-9, and 13 of Procedure 1 for each area

on the pack.

3. Ud notifies the Bs operator that the pack may be moved.

4. The Bs operator removes the pack.

5. Br operator mounts the pack.

6. Br operator activates pack mount utilicy, Un.

7. U. initiates steps 10-12 and 14-16 of Procedure 1 for each area on the
There are two types of task movement in a DDBMS; the traqsferring of an

application program between processors, and the interprocessor movement of

back-end software. Both cases can be considered as processor function

pack.

N e

reassignment.

In the case of host function movement the only action required is a
change in the Logical-to-Physical Processor Map in the network operating
system. The redefinition of th; ability for appropriate processors to
access an area can also be accomplished by executing the DMCL compiler with
a modified HOSTS paragraph.

The back-end functions may only be transferred if the receiving pro-
cessor is linked té the storage device(s) containing the area. The
mechanisns for accomplishing the transfer are identical to the host
situation. Either the network operating system Logical-to-Physical Pro-
cessor Map or the DMCL BACK-END sentence can be amended.

Thus as in the case of data movement, tasks (processor functions)
can be moved in a DDBMS with minimal overhead and with no alteration
required to user or DBMS software. This statement is predicated upon the
portability of the data base system software. Given the state of the
industry, movement must be restricted to homogeneous machines for the
present.

One important fact concerning the relationship between logical and
physical names for physical entities (processors, devices) is that the
mapping can be one-to-one, many-to-many, one-to-many, or many-to-one. A
one-to-many mapping indicates a multi-processor configuration or an area
spread across several devices. A processor or storage device can be
identified by several logical names, thus producing the many-to-one rela-
tionship. The many-to-many mapping is a merger of the two previously men-
tioned situations. The flexibility of the logical to physical mapping

provides the data base administrator with considerable latitude in the

distribution of the data base.

—F

18

Figure 7 depicts a one-to-many device mapping. The area NAMMES {s spread
over three physical devices. The record occurrences, FRED, VIRG, and PAUL,
all reside on separate disk packs controlled by the same back-end processor.
The multi-device area concept is fgund in many commercially available data
base danagemenc systems.

A one-to-many processor mapping fmplies the existence of a multi-processor
back-end. A wmulti-processor back-end consists of several processors joined
via aluemory-to-memory connection. Each processor has access to the areas
controlled by the back-end function shared by the processorg‘ If a processor
in a multi-processor back-end configuration does not have a direct physical -
connection, it requests that a processor having such & link péerform the I/0
transfers. With a shared memory interprocessor connection, such requests
are performed at machine memory speeds. figure 8 illustrates a multi-
processor back-end configuration. The concept of multi-processor back-end
machines is discussed by Lowenthal in Reference [5]. Figure 9 portrays a
many-to-many wapping which is realized by combining the configurations
shown in the two previous figures.

For a given distributed data base system, the range of a multi-processor
back-~end configuration is limited by the network topology. A generalized
network such as MIMICS [4] is composed of a collection of machine clusters
joined together. Within each cluster several processor nodes linked via
high speed memo;f connections, (5 -°10 Megabyte/sec). Figure 10 shows the
general topology of the MIMICS network.

The following rules apply to multi-processor back-ends:

1. The processors comprising a mult{-processor back-end must be

meabers of the same cluster.

- 2. Areas may not span clusters. As shown in Figures 8 thwu10,{t is

g
;

HOST

AV

—

BACK-END

N A W S
FRED VIRG PAUL
o
Ficure 7

MuLTi-Device ARea

19

——r

20
HOST
N
\/
BE2 BE] BE3
T N /!'\
NA?ES WIVES CHILDREN
f | DAVID
| FRED KAREN JENNI
| VIRG DEE TODD
; SHELLY
| PAUL RUTH HOWARD
| AMY
L RAIG
MA

FiGure 8

MuLT1-PROCESSOR Back-END

Ficore 9

MuLTi-Device AREA WITH MuLTi-Processor Back-Enp

22

CLUSTER I

A
-
=l
|

CLUSTER J

Ficure 10

GeneraL TopoLoGy ofF MIMICS

Yo

-y

.

~
w

not necessary for each node in a multi-processor back-end cluster to have

a communication link to a host computer (or a cluster of host computers).

i s s Lot A o 0

The node with the communication link (BEl {n Figures 8 and 9, for example) j

functions as the master back-end for that multi-processor back-end configu-

ration. The master handles the communication operations and parcels out

the DML commands to be executed by the individual back-end processors.
An analysis of the performance, security integrity, and economic

beneffts of the multi-processor back-end concept has been performed by

Lowenthal [5].

L Y
B. The Inter-Process Communication System (IPCS) of MIMICS

Movement of (areas of) data in a DDBMS is accomplished via some inter-
process communication (message) utility which has the following functions:

1) 1t makes the topology of the network transparent to the application
program;

2) it makes data distribution transparent to the application program; ~/

3) it synchronizes the tasks which exchange data to insure no data is

lost, garbled, or pilfered;
4) it manages the names of network tasks;

$) and finally, it transmits data and commands between tasks (appli-

cation program and DBMS tasks, for example). The concepts of the IPCS

commands available to a task level are providéd in Figure 4.
The IPCS of MIMICS is connection-based. That is, the general scenario
of IPCS usage by a task is as follows:

1. CONNECT (, , =---)

2. Exchange data using SEND and RECEIVE; exchange commands using

SEND_COMMAND and ACCEPT_COMMAND; and WAIT on a particular function

. completion when necessary

24

3. DISCONNECT (, , ===)

The CONNECT/DISCONNECT functions establish and destroy data/command paths
between tasks. The SEND/RECEIVE functions exchange data. The IPCS syn-
chronizes the message SEND's from the source task and the RECEIVE's from

the destination task to assure proper space is allocated for the wessage.
The SEND_/ACCEPT_COMMAND functions allow commands to be exchanged between
user tasks without prior data space allocation necessary. This permits
user' tasks to exchange simple commands to establish a protocol for exchang-
ing messages. It also permits.priority traffic for error or control
information to be exchanged. This is the mechanism used fgt movement of
areas in a transparent manner. Since all of the above SEND's and RECEIVE's
do not force the task to stop execution until completion (to provide over-
lap of execution and data exchange), the task may choose to WAIT until a later
tiume on a particular SEND or RECEIVE (eveﬁt).

The general structure of the IPCS is shown in Figure 1l1. The appli-
cation program conceptually exchanges DML's and data/statu§ with the DBMS
task. The User Envelope transmits these elements across a network as
data and commands. The User Envelope thus maps source and destination
tasks onto source and destination logical processors and then oéto physical
processors via the L-P-P map and the ALL table. Thus the System Envelope
has the capacity to re-route DML's and da:a)sta:us via a new mapping. The
Message System merely does the movegent of data between tasks which have
established a connection.

Figure 12 illustrates the method by which the movement of an area between
two back-end machines can be achieved in a manner transpareant to an applica-
tion program. It is assumed the appliéation program task (APT) and the DBMS

_have an established connection. The general procedure, from the view of the

message system, to move an arca i{s as follows:

25

@PPLICATIONZ---—'QﬂL—§tAI§m§NI§ - —
PROGRAM & __ __ _STATUS/DATA__ _ m

o
RS ——
— T~ CONNECTTON
USER —,PROTOCOL SYNCHRONISM, ~ ”SELSJD
ENVELOPE ‘OUT-OF-BAND COMMANDS™ N

MESSAGE

|

UTILITY

< MESSAGE DATA 5 MESSAGE)
-~ P
SYSTEM COMMANDS

e e ————

Fieure 11

Levers oF MIMICS ProTocoL

JYLNO) 3J¥N0S3IY

woz._.uzllumz e

11SAS 9N1:V¥3dO
V201 ONISA

10201084 SIWIW ONISQ IN3WIAOY
ZT 3uno14

s g o e = P

Y34y 40 OIY¥VN3OIS

N - : A
& < %sv] SWdd ¢39 ANV ISOH <
A >
viva/sniv N33M13g S39vSSI) 3A13D3Y/AN3S viva/snivis
g <
TSOR oL 133wWos > < 730 OL 153NNOD
IWYN NSVL IWVN
L \./.\ > >
R N I N T
2N N |25VL 238
- Syl RVWWOS ONVWWOS GN3S 153no3y
JSWEQ 3LvI0TTY r;mmmv 14322V LSOH
~ EN
| (@w z qa-vove 10 3
[(01 V¥V 3AOW _ hzmzuﬂoz y
3953100 103NNOOSTA ~ | = 305310 L3INNOISIA { NOTLvd1I1 LYY
,Z34 OL 193NNOD N3HLTIG oN I
 y3yy 3A0W WO¥S LDINNODSIA OL 3uvd3nd,
R P £ 11101 o 11117 J R N ANVW#09 14339V 1
|
|
139 | I
—VIVA/SAIVI® ANSS > = SATTHIY YIVA/SAIVIS
< N TNEREL] < anas. S T
—CHUSSST ASVT TIUTIANT WITSKS TICTIANT (1Y) BV
SHAQ ¥3s() 30VSSIY ¥3s(WY490Y]
. { N . MOT1VOITddY
(rn A - pncenngd TYNOTLONNA IQOH = U5GE 3007 1 Tymr s 1o
))

.

TR I L i Y e 4 e S A

T I

FIEN

-

1) The User Envelopes exchange the desire (initiated from either

end) to DISCONNECT after a certain sequence of messages i{s complete.
2) Each does a DISCONNECT (,QUIESCE). (These are synchronized by
the Message System.)
3) The AREA is transferred by a file transfer protocol [6] via a
connection between tasks Us and Ur' (See Figure 6.)
‘2 The User Envelopes on the Host and Back-End 2 (BE2) then connect
as follows:
The Host User Envelope requests a network task name for @ DBMS ta;k
on BE2 from the Network Resource Controller (NRC) on the Host. The
NRC's of all processors are fully connected. Thus this réquest is
made of the NRC on BE2. It responds with the task name. The User
Envelope then connects to the BE2 User Envelope and DML's and data/
status flow between the Host APT and Ehe BE2 DBMS task.
It is important to note that NRC must access only the L-P-P map. It should
be clear from Figure 12 that the Host APT does not particip;te in the move-
ment or knowledge of the movement of the AREA other than by observing some
performance change.
V. Structure of Host and Back-End Software
A host computer in a DDBMS must contain software to execute application
programs, to selegc the proper back-end for data base functions, aund to
communicate with the back-end processor. In order to meet these ends, a
host must have a software organization similar to that depicted in Figure
13. The Logical-to-Physical Processor Map (L-P-P Map) is simply an array
of physical identifiers indexed by logicalbnanes. As mentioned in prior
sections, this map i{s used in the selection of the back-end processor.

The Inter-Process Cocmunication System (IPCS) [4] serves as a generalized

- wormunication system for the data base nctwork.

28

| USER PROGRAM K
' | USER WORKING | SYSTEH | DBHS 0
| __AREA | LOCATINS i INTERFACE__ P
I E
i : R
| A
USER PROGRAM 1 .
| USER WORKING [SYSTEMS | DBMS 1
__AREA | LOCATIONS INTERFACE | N
SUB- SUB- 6
SCHEMA C SCHEMA | ¢
1 M Y
- S
DBMS 1
AREA LOGICAL | | LOGICAL 70 E
| LOCATION TABLES SYSTEM LOCATIONS PHYSICAL PROC-) M
q IPCS
(INTER-PROCESSOR COMMUNICATION SYSTEM)

FiGcure 13

- HosT SoFTWARE ORGANIZATION

29

A back-end processor must hold the sub-schema and DMCL Tables for
each area in its domain. Due to the possibility of multiple back-end
participation in DML execution, each back-end processor must contain
complete ALL Tables for all sub~schemascontaining areas managed by that
wmachine. The back-end must also contain the Logical-to-Physical Processor
Map in order to determine physical processor identification. As shown
in Figure 14, the back-end software must also include a Device Header
List (b.H. List) which indicates the contents of the secondary storage
units. The Device Header List contains a linked list of areas with each
list headed by a device indicator name. * o
It is important to note that a single machine may be both a host and
back-end processor. 1In that situation, the software shown in both Figures
13 and 14 must reside upon that machine. If a processor assumes more than
one logical host or back-end function, the DMCL Tables and sub-schemas for
each logical processor function must be stored in the memory of the machine.
Figure 15 illustrates the software required on processor Pllof Figure 3.
P, has two back-end functions, B

i
associated with {t.

1 and Bz, and one host function, Hl'

Vi. The Data Dictionary

Each processor in a DDBMS may require access to any schema, sub-schema,
or ALL Table. Copies of this information aré maintained in the data
dictionary. When a DBMS application task is loaded onto a host processor,
its associated sub-schema and ALL Tables are obtained from the data die-
tionary. The data dictionary also holds the potential Logical-to-Physical
Processor Map which indicates those processors permitted to assume a particular
logical name. This list is used whenever an application program requests an

srea for which there is no active processor performing that back-end function.

_The general structure of a DDBMS data dictionary is {llustrated in Figure 16.

Ve e ackeuiiabiy

30

0
[PCS
, P
(INTER-PROCESSOR COMMUNICATION SYSTEM) E
N R
[LOGICAL TO A
BUFFERS ! PHYSICAL T
 PROCESSOR MAP I
N
DBMS G
5 ALL TABLE D.H. LIST §
' SUB- SUB- S
SCHEMA . . . | SCHEMA T
1 [E
- M
DML ~{ DML
TASK . . . TASK
1 J
FiGure 14

Back-EnD SoFTWARE ORGANIZATION

4

31

. USER PROGRA K]
UHA SYSTEM LOCATIONS DBHS INTERFACE |
- PR . H P ;
~ USER PROGRAM 1 | E
; A SYSTEM LOCATIONS DBIS INTERFACE 2 ‘
i . SJB-SCHEMA 1(H)) l .+ . | SUB-SCHEMA M(H) @ T |
' l
o 1
} | DBMS (HOST) "
AL TABLE (INCLUDES ENTRIES SYSTEM LOCATIONS 6
. ' SUB-SCHEMA 1(B}) .« . | SUB-SCHEMA K(Bp) | S
f Y
| !
| - SUB-SCHENA 1(B) .+ . | SUB-SCHEMA I(Bp) | S -
E T
| D.H. LIST L-P-P MAP E
'. M
muTask 1!l L L DL TASK J
; !
: ~ DBMS (BACK-END) |
' BUFFERS |
IPCS o
Ficure 15
~/

SoFTWARE ORGANIZATION FOR A
ProcESsOR WITH MuLTIPLE FUNCTIONS

32

(SCHEMA 1
SCHEMA OBJECT MODULE

ALL TABLE

SCHEMA "
7+ SUB-SCHEMA 1
1

ENTRY |

SUB-SCHEMA OBJECT MODULE

SUB-SCHEMA K

~ i SUB-SCHEMA OBJECT MODULE

SCHEMA 2 ENTRY

SCHEMA M ENTRY

POTENTIAL LOGICAL TO PHYSICAL
PROCESSOR MAP -

Ficure 16

DaTAa DicTioNARY ORGANIZATION

3

The exact mechanisu of ioplementing the data dictionary can vary with),
~ the structure of the underlying computer network. The dictionary must reside
on a high speed secondary storage device for rapid access. The data dictionary
is used generally for query with little update. Therefore, multiple copies
of the data dictionary may be maintained for the sake of reliability and more
rapid ;eference. In certain eanvironments, it may be desirable‘fo partition
the data dictionary into sub-dictionaries which contain tnformation on data

residing in particular sections of the network.
Y

VII. Conclusion

This paper has presented a mechanism for the distribq&ion of a
CODASYL-type data base management system in a manner that is transparent
to the application program. The software structure presented herein
presupposes an underlying computer network with the necessary hardware
and software to allow interprocessor communication via a standardized
message system. The basis for distribution in the DDBMS is the ALL Table
1 which provides informaticn on the location of each data base area.

The mechanisams detailed here provide a DDBMS communication facility
that is relatively easy to realize. However, many of the problems of
distributed data s&stems, as outlined by Fry and Sibley (7], still
require practical solutions. The dilemmas posed by deadlock, backup,
recovery, and security are extremely complex. Another foruidable stumb-

ling block for distributed data base systems is the general lack of port-

ability and compat:bility within both the hardware and software environments.
The system described here could be implemented with moderate effort on

homogeneous networks. For heteroganeous networks, advances in soft-

ware portability and standardized communication protocols are required.
Progress is being made in these areas although it is hampered somewhat

By the marketing philosophy of “locking the user in" to a vendor's

i -~ product line,
#
#

v Bibliography

!
? 1. CODASYL COBOL Journal of Development, Dept. of Supply and Services,
|)
Material Data Management Branch, Ottawa, Ontario KIA 0S5, (revised
to) June, 1976.

2. CODASYL Data Description Language Journal of Development, Document

‘ €1362:113, U.S. Covernment Printing Office, Washington, D.C., 1973.

3. Maryanski, F.J., et al., "A Minicomputer Based Distributed Data Base

System, Proc. 1EEE~NBS Symposium on Trends and Application 1976:
Micro and Mini Systems, May, 1976, pp. 113-118.

4. VWallentine, V.E., "MIMICS-The Capabilities to be Developed", Computer

Science Dept., Kansas State University, Manhattan, KS. 66506, May, 1976.
-~ 5. Lowenthal, E.I., "The Backend Computer", MRI Systems Corp., P.0. Box 9968,
Austin, Texas 78766, Apr.,'1976.

6. Wallentine, V.E., et al,, "Progress Report on Functionally Distributed
Computer Systems Developemnt: Software and Systems Structure" TR CS77-4,
Computer Science Dept., Kansas State University, Manhattan, KS. 66506,
Dec. 1976,

7. Fry, J.P. and Sibley, E.H., "Evolution of Data-Base Management Systems",

Computing Surveys, Vol. 8, No. 1, May, 1976, pp. 7~42.

